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Stability analysis of the active control system with time delay using IHB
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Abstract In this paper, the incremental harmonic balance method is employed to solve the periodic
solution that a vibration active control system with double time delays generates, and the stability
analysis of which is achieved by the Poincare theorem. The system stability regions can be obtained
in view of time delay and feedback gain, the variation of which is also studied. It turns out that along
with the increase of time delay, the active control system is not always from stable to unstable, and
the system can be from stable to unstable state, whereas the system can be from unstable to stable
state. The extent that the two times delays impact on the system stability region is mainly related
to the relative magnitude of the two feedback gains. The system can maintain the stable state under
the condition of the well-matched feedback gains. The results can provide evidence to design the
control strategy of time-delayed feedback. c⃝ 2013 The Chinese Society of Theoretical and Applied
Mechanics. [doi:10.1063/2.1306311]
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Time delay broadly occurs in the active control
systems1,2 and it brings some difficulties with the struc-
tural vibration control systems. Some study results in-
dicate that time delay can lead to the unstable of a
vibration active control system. So researching the sta-
bility of active vibration control systems with time delay
is very necessary.3,4

With regards to the stability study of the system
with time delay, two main analytical methods are put
forward currently. One is the time domain method
and the other is the frequency domain method. The
time domain method is performed by constructing an
appropriate Lyapunov function. Wu5 obtains a delay-
dependent stability of the open-loop fuzzy system us-
ing a new fuzzy Lyapunov–Krasovskii functional and
also studies the stability of the discrete-time Takagi and
Sugeno fuzzy systems with the state time delay. Liu and
Wang6 establish several exponential stability criteria by
employing the theorem of Lyapunov functional to study
the exponential stability of the time-delay impulsive
systems. Chen7 presents a Takagi–Sugeno fuzzy model
for the modeling and stability analysis of oceanic struc-
tures using the Lyapunov method. These researches
are all based on the Lyapunov stability theory. But in
practical problems, it is difficult to establish Lyapunov
function; therefore, the use of the time domain method
is very restricted.

In addition to the method mentioned above, another
one is called frequency domain method in which the
eigenvalue method is the most widely used for the anal-
ysis of the time-delay systems. Wang and Hu8 calculate
the rightmost root of the eigenfunction, establishing a
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new stabilization criterion and determining the admis-
sible values of the feedback gains and delays with the
given effective procedure.9 Yi et al.10 raise a question
of feedback controller by means of the eigenvalue as-
signment for linear time-invariant system of linear de-
lay differential equations with a single delay. Bai et
al.11 use a multi-step hybrid method to solve the multi-
input partial quadratic eigenvalues assignment problem
with both the system matrices and the receptance mea-
surements. The methods adopted by those references
require solving every eigenvalues of the eigenfunction,
however, the practical eigenequation of the controlled
system with time delay is a transcendental equation,
and thus how to figure out its accurate eigenvalues of
the transcendental equation is the core issue which must
be settled successfully.

In this paper, the incremental harmonic balance
(IHB) method is used to solve the periodic solution that
a vibration active control system with double time de-
lays generates, then the stability analysis of which is
achieved by the Poincare theorem. With respect to dif-
ferent matches of time delay and feedback gain, the sys-
tem stable regions are found out.

The strongly nonlinear dynamics control system
with the displacement feedback and the velocity feed-
back is taken into account in this paper. The external
excitation is assumed as harmonic excitation. Then the
motion equation is given by

ÿ(τ) + 2ξẏ(τ) + gy(τ) + ky3(τ) =

F (τ) + s1y(τ − u1) + s2ẏ(τ − u2), (1)

where ξ is the damping coefficient, g is the restoring
force coefficient, s1 and u1 are the displacement feed-
back gain and time delay, s2 and u2 are the velocity
feedback gain and time delay, F (τ) is the external exci-
tation and taken as F (τ) = f cos(ωτ), ω is the exciting
frequency, and f is the excitation amplitude. The time
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delay differential equation above is solved by the IHB
method in this paper.

To nondimensionalize Eq. (1), we let

t = ωτ, y(τ) = x(t), F (τ) = f sin t. (2)

Substituting Eq. (2) into Eq. (1), we can obtain

ω2ẍ+ 2ξωẋ+ gx+ kx3 = f sin t+

s1x(t− ωu1) + ωs2ẋ(t− ωu2). (3)

Let x0 and ω0 represent a certain state in vibration,
then the adjacent state can be represented as incremen-
tal forms

x = x0 +∆x, ω = ω0 +∆ω. (4)

Equation (4) is substituted in Eq. (3), and the in-
cremental Eq. (5) is obtained after ignoring the high
order quantity. It should be noted that ∆x, ∆ω are the
unknown quantities.

ω2
0∆ẍ+ 2ξω0∆ẋ+ (g + 3kx20)∆x = R−

2ω0∆ωẍ0 − 2ξ∆ωẋ0 +

s1[x0(t− ω0u1 −∆ωu1) +

∆x(t− ω0u1 −∆ωu1)] +

s2(∆ω + ω0)ẋ0(t− ω0u2 −∆ωu2) +

s2ω0∆ẋ(t− ω0u2 −∆ωu2)−
s1x0(t− ω0u1)− s2ω0ẋ0(t− ω0u2) (5)

and

R = f sin t+ s1x0(t− ω0u1) + s2ω0ẋ0(t− ω0u2)−
(ω2

0ẍ0 + 2ξω0ẋ0 + gx0 + kx30), (6)

where R is imbalance force, and theoretically when
R = 0, x0 and ω0 will be the exact solutions.

Supposing the solution of the Eq. (5) is

x0 =
∞∑

n=0
[an cos(nt) + bn sin(nt)],

∆x =
∞∑

n=0
[∆an cos(nt) + ∆bn sin(nt)],

(7)

Eq. (7) is substituted in Eq. (5). Let the harmonic
term coefficients be equal value. Then the equation is
obtained as

K∆a = R1 +R2∆ω, (8)

where K is n × n dimension matrix, ∆a, R1, R2 are
n× 1 column vectors.

Let ∆ω = 0, give initial values to the harmonic term
coefficients, and substitute the initial values in Eq. (8)
to get ∆a. Then a is replaced by a+∆a which is sub-
stituted in Eq. (8) to get the new value of ∆a. Based
on the substitution, the equation is iterated circularly
until R is up to the appointed precision.

The system periodic solution solved by the IHB
method can not determine the dynamic system stably
or unstably. For this reason, the Poincare theorem is
employed herein to judge the stability of the solution
and it is expressed as follows.

Supposing C0 is the periodic solution of the au-
tonomous system which can be written as

ẋ = P (x, y),

ẏ = Q(x, y),
(9)

where C0 : x = φ0(t), y = ψ0(t).
The period of φ0(t) and ψ0(t) is T . Then the inte-

gral expression is

hc =
1

T

∫ T

0

[
∂P

∂x
(φ0, ψ0) +

∂Q

∂y
(φ0, ψ0)

]
dt, (10)

and it is called the characteristic index of C0.
According to the Poincare theorem, the periodic so-

lution is stable or unstable when the characteristic index
is negative or positive.

Theoretically speaking, the Poincare theorem is ap-
plied to the autonomous system. Hence, how to improve
the method so as to hold for the non-autonomy system
is the key problem which should be considered and set-
tled effectively.

Considering the forced vibration of the nonlinear
system, the motion equation is shown as

ẍ+ f(x, ẋ) = F (t). (11)

Supposing x0 is the solution, ∆x is the small dis-
turbance quantity given by

x = x0 +∆x. (12)

Equation (12) is substituted in Eq. (11) where the
high-order quantity is omitted, so the incremental equa-
tion (13) is obtained as

∆ẍ+ f(∆x,∆ẋ) = 0. (13)

Equation (13) is a perturbation equation of Eq. (11).
Based on the motion stability theory, the stability of
the periodic solution of the Eq. (11) corresponds to the
stability of the periodic solution of the Eq. (13).12

The next is to deal with the time delay term of the
Eq. (5), the solution of which can be obtained by using
the IHB method expressed as

x =

∞∑
n=0

[an cos(nωt) + bn sin(nωt)]. (14)

First and second derivations of Eq. (14) induce the
expressions x′(dx/dt) and x′′(d2x/dt2). Likewise, the
expressions x(t−u), x′(t−u), ..., x(n)(t−u) are induced
in turn as

x(t− u) = m10x(t) +m11x
′(t)+

m12x
′′(t) + ...+m1nx

(n)(t),

x′(t− u) = m20x(t) +m21x
′(t)+

m22x
′′(t) + ...+m2nx

(n)(t),

x′′(t− u) = m30x(t) +m31x
′(t)+

m32x
′′(t) + ...+m3nx

(n)(t),

· · ·
x(n)(t− u) = mn0x(t) +mn1x

′(t)+

mn2x
′′(t) + ...+mnnx

(n)(t).

(15)
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Equation (14) is substituted in Eq. (15). The unde-
termined coefficients m10,m11, ...,m1n, ...,mnn can be
obtained according to the harmonic balance theory.
Then the characteristic index of the periodic solution
of Eq. (5) can be got by Eq. (10). Accordingly the
stability of the periodic solution can be determined by
using the Poincare theorem.

Letting ω = f = 1, ξ = 0.02, s1 = 0.4, s2 = 0.128 1
in Eq. (3), two time delays are taken as the control pa-
rameters and then the stability analysis of the periodic
solution is carried out using the Poincare theorem. To
certify the validity of the proposed approach, the re-
sults are compared with the numerical solution which
is obtained by adopting the adaptive variable step size
Runge–Kutta–Felberg method. The phase planes are
shown in Figs. 1 and 2.
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Fig. 1. Phase plane with u1 = 1.5, u2 = 3.
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Fig. 2. Phase plane with u1 = 10, u2 = 3.

Figure 1 illustrates the phase plane with u1 = 1.5,
u2 = 3. Based on the theory discussed previously, we
can get the characteristic index of the periodic solu-

tion C0 = −0.540 7. The periodic solution is stable ac-
cording to the Poincare theorem which is also proofed
(Fig. 1). Likewise when u1 = 10, u2 = 3, the charac-
teristic index of the periodic solution is C0 = 0.074 4,
which accounts for the conclusion that the system is un-
stable, which is also verified by the numerical result as
shown in Fig. 2.

Similarly, letting ω = f = 1, ξ = 0.02 in Eq. (3),
two feedback gains are taken as the control parameters
and then the stability analysis of the periodic solution is
carried out by using Poincare theorem. After collecting
the results of different time-delay matches, the stability
regions corresponding to the characteristic indexes are
drawn consequently in Fig. 3.

As shown in Fig. 3(a), the variational stability ar-
eas display the zonal distribution with the displacement
feedback delay, with s1 = 0.4, s2 = 0.128 1. The unsta-
ble and stable regions appear alternately. The influence
of the velocity feedback delay impacting on the system
stability appears only in the vicinity of the boundary
between the unstable region and stable region, which
barely has effect on the system stability. On the con-
trary, the influence of the displacement feedback delay
on the system stability region is obviously greater than
the velocity feedback delay and plays the decisive role.

From Figs. 3(b) to 3(e), it shows that the effect
of the velocity feedback delay on the system stability
is increasing gradually in the condition that the rela-
tive magnitude of the two feedback gains varies. The
displacement feedback gain is invariant and the veloc-
ity feedback gain is increasing from less to more than
the displacement feedback gain. We can see from the
Fig. 3(e) that the velocity feedback delay on the system
stability has played the decisive role in converse to the
Fig. 3(a). However, the system stability is determined
by whether the crossing point of the two feedback delays
falls into the region S, that is to say, either of the two
delays can not entirely determine the system stability.
As a consequence, the system will be stable only if the
two delays have a good combination.

According to the phenomena derived from the above
results, some laws can be attained. The distribution of
the system stability region is mainly related to the rel-
ative magnitude of the two feedback gains. Meanwhile
the system stability can be mainly related to the relative
magnitude of the two time delays under the condition
of the two specified feedback gains.

The stability of the active vibration control system
with double time delay is analyzed in this paper. The
results show that along with the increase of time delay,
the active control system is not always from stable to
unstable, and the system can be from stable to unsta-
ble state, whereas the system can be from unstable to
stable state. The extent of the two times delays impact-
ing on the system stability region is mainly related to
the relative magnitude of the two feedback gains. The
stability regions are controlled by the relatively impor-
tant feedback delay. These laws can provide evidence
to design an effective control strategy of a time-delay
system.
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Fig. 3. System stability region. “U” represents the unstable region; “S” represents the stable region.
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